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Nomenclature

Introduction
During the last two decades, considerable efforts have been devoted to the study
of natural convection flows generated by buoyancy forces in finite geometries.
The interest in such problems stems from their importance in such areas as
convective heat loss from solar collectors, energy conservation in buildings, air
conditioning, and recently, the cooling of electronic components by natural
convection. Reviews of a large part of these works have been presented by
Bejan[1], Platten and Legros[2] and Yang[3]. Numerous engineering applica-
tions have made the topic of natural convection in enclosures one of the most
active subfields in heat transfer research today. The existing literature in this
domain has focused considerable attention on natural convection in rectangular
cavities differentially heated. Some of these works have been recently
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A = aspect ratio of the system, L'/H'
B = relative height of the cavities, 

h'/H'
g = acceleration due to gravity, m2/s
h' = dimensional height of the 

cavities, m
h
–

= average heat transfer coefficient
on cold wall, W/m2K

H' = dimensional height of the 
system, m

l'1 = length of a cavity, m
l'2 = length of a baffle, m
L' = total length of the domain, m
Nu = normalized mean Nusselt 

number
Pr = Prandtl number, ν/α
Q = overall heat transfer by 

convection across the cold wall 
Qc = overall heat transfer by 

conduction across the cold wall 
Ra = Rayleigh number, 

gβ∆T'H'3/(να)
t = dimensionless time, t'α/H' 2

T = dimensionless temperature of 
fluid, (T' – T'C)∆T'

∆T' = temperature difference, T'H–T'C, 
K

u,v = dimensionless velocities in x
and y directions, (u', v')H'/α

x,y = dimensionless Cartesian 
co-ordinates, (x',y')/H'

Symbols
λ = thermal conductivity, W/Km
α = thermal diffusivity of the fluid, 

m2/s
β = volumetric coefficient of thermal 

expansion, 1/K
Φ = inclination of the system
ν = kinematic viscosity, m2/s
ψ = dimensionless stream function, 

ψ'/α
Ω = dimensionless vorticity, Ω'H' 2/α

Subscripts

H = heated wall

C = cooled wall

max = maximum value

min = minimum value

ext = extremum value

Superscript
' = dimensional variables

Note: The symbols defined above are subject to alteration on occasion
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summarized in reviews and reference books by Catton[4]. A few investigations
concerning heat and fluid flow phenomena in systems fully[5,6] or partially[7-9]
heated from below, have also been reported. The resulting flow patterns were
found to be considerably affected by the geometric shape of the system under
consideration.

Interest in the study of natural convection heat transfer in repetitive
geometries heated from below is relatively recent. Such studies furnish a useful
description of the behaviour of fluids in several situations encountered. In fact,
the increasing demand for the design of high packaging density has resulted in
a change of the role of cooling in electronic industries. Since proper cooling of
electronic components by natural or mixed convection is a reliable operation,
the study of heat transfer resulting in these configurations must be examined in
detail in order to provide adequate cooling and to prevent failure of the
components. Among the older investigations concerning the repetitive
geometries are the efforts of Jacobs et al.[10] who considered the case of a fluid
mass of infinite extent above an array of uniformly spaced rectangular cavities.
The bottom of the cavities was assumed to be isothermal with either adiabatic
or isothermal side walls. The problem was studied experimentally and
numerically for Grashof numbers ranging from 1 to 105, where the Grashof
number is calculated based on the cavity width. The same problem was
reconsidered by Jacobs and Mason[11] where the bottom of the cavities is
subject to a uniform heat flux rather than constant temperature. It was found
that the uniform heat flux condition leads to the development of strong
secondary flow circulation cells and, ultimately, to a reversal flow in the cavity.
It was pointed out that the heat transfer is greatly inhibited by the secondary
cells for Grashof numbers greater than 103.

In their numerical approach and, owing to the symmetry of the problem,
Jacobs et al.[10,11] restricted the calculations to the half of the smallest
representative domain. This simplification forced the solution to be symmetric.
Also the governing equations were solved in their steady-state form[11]. With
these assumptions, the resulting flow pattern for a given set of governing
parameters is unique. However, it was demonstrated recently that some natural
convective flows may show multiple steady-state solutions[12-15]. Recently,
Hasnaoui et al.[16] have extended the above studies concerning heat transfer,
from an infinite uniform array of open cavities heated from below, to a situation
where the flow is confined by a horizontal cold plate. They pointed out that the
symmetry of the flow can be destroyed. The evolutionary path to steady-state
flow was examined and sustained oscillatory behaviour was observed in
several cases.

The objective of the present study is to gain some insight into fluid motion
and heat transfer phenomena in the case of a finite number of cavities (two and
three) covered by a cold plate and connected by adiabatic walls. The effects of
the confining adiabatic walls and the connecting wall heights will be
investigated. Comparison of the present results in terms of flow structure and
average Nusselt number will be made with other published results.



HFF
7,6

582

Physical model and governing equations
The schematic representations of the geometric arrangements are depicted in
Figure 1. They consist of a set of two and three cavities heated from below and
connected by adiabatic walls. The hot and the cold walls are at isothermal
temperatures T'

H and T'
C respectively. All the physical properties of the fluid are

constant except the density in the buoyancy term where it obeys the Boussinesq
approximation. It is assumed that the third dimension of the cavities is large
enough so that the flow and heat transfer are two-dimensional. Using current
hypothesis, the dimensionless governing equations in terms of vorticity Ω,
temperature T and stream function Ψ are:

(1)

(2)

(3)

(4)

The hydrodynamical boundary conditions are such that normal and tangential
velocities vanish on all solid boundaries (u = v = Ψ = 0).

Figure 1.
Schematic of the
physical problem: (a)
case of three cavities;
and (b) case of two
cavities
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The thermal boundary conditions for the case of three cavities are given by:

The thermal boundary conditions for the case of two cavities are given by:

(6)

where n denotes the normal direction to a given wall.
The normalized mean Nusselt number, which gives the net heat transfer rate

leaving the system through the cold surface, is given by:

(7)

where QC denotes the overall heat transfer by conduction across the cooled wall.

Numerical method
The governing equations (1)-(3) describing the flow and heat transfer in this
problem were solved numerically using a finite difference discretization
procedure. Central difference formulae were used for all spatial derivative terms
in the Poisson, energy, and vorticity equations. Discretized forms of temperature
and vorticity equations were solved by using a modified alternate direction
implicit method (ADI). This method has been extensively used in the past to solve
transient two-dimensional problems. Values of the stream function at all grid
points were obtained with equation (3) via a successive over relaxation method
(SOR). Variations by less than 10–4 over all grid points for the stream function
was adopted as the convergence criterion at each time step in order to satisfy the
continuity equation. The time step size was varied from 2 × 10–5 to 10–4

depending on the Rayleigh number (Ra) and B. Uniform grids of 81 × 33 and 61 ×
33 in x and y directions were found to model accurately the fluid flow and heat
transfer respectively for the cases of three and two cavities. In fact, the effect of the
grid size on heat transfer and fluid flow was examined by refining the mesh for
both steady-state and most intense transient cases. The maximum differences

∂
∂
T

n
= 0 for insulated walls

(5)
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observed in the stationary regime were 2.3 per cent in Nu, and 0.86 per cent in Ψext
when grids of 121 × 65 were used. In transient cases, the maximum differences
obtained by using the last grid were 2.8 per cent in

—
Nu, and 2 per cent in

—Ψext. The
numerical model was validated with the solutions obtained by Hasnaoui et
al.[16] and maximum deviations of 1 per cent were observed. The numerical code
was also validated with the benchmark solution of De Vahl Davis and Jones[17].
For Ra = 106, the deviations were 0.5 per cent in Ψmax, and 0.6 per cent in Nu0.

Results and discussion
Flow fields, temperature fields, and heat transfer rates across a cold wall will be
examined in the following sections for various Rayleigh numbers (103 ≤ Ra ≤
106 and geometrical parameter B (1/8 ≤ B ≤ 1/2). The air was considered as a
working fluid (Prandtl number, Pr = 0.72). All the analysis was carried out
assuming A = L'/H' = 2.5 (for three cavities) and 1.5 (for two cavities) and an
inclination angle Φ ranging from 0 to 180°.

Streamlines and isotherms (Φ = 0°)
Case of three cavities. Typical results of streamlines and isotherms in the
stationary regime are shown in Figure 2 for B = 1/2. For Ra = 104, Figure 2a

Figure 2.
Streamlines and
isotherms for B = 1/2:
(a) Ra = 104, Ψext = 1.41;
(b) Ra = 5 × 104, Ψext =
(7.43, –7.42); and (c) Ra
= 7 × 104, Ψext = (6.59,
–7.00)
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shows that the flow regime is close to the pure conduction one. The fluid
circulation is poor (Ψext = 1.41). The isotherms are horizontal in the lower part
of the central cavity and slightly distorted in the upper part. The flow pattern is
characterized by a perfect symmetry about the vertical axis (π) which bisects
the domain. The viscous forces exerted on the vertical adiabatic walls of the
central cavity retard the motion in this cavity since the buoyancy forces are, for
this Rayleigh number, insufficient to overcome the resistance forces. The
aspects of the streamlines and isotherms aspects change significantly by
increasing the Rayleigh number: the fluid circulation becomes more intense and
the symmetry observed for smaller Rayleigh numbers is destroyed. Thus, for
Ra = 5 × 104, Figure 2b shows that the flow becomes asymmetric (Ψmax = 7.42
and Ψmin = –7.43) and the distortion of the isotherms expresses an increase in
the heat transfer by natural convection. It is noted that the symmetry breaking
occurs when Ra exceeds 1.75 × 104. A similar behaviour was observed by
Hasnaoui et al.[16] in the case of an array of cavities. Also, as Figure 2c
illustrates for Ra = 7 × 104, each of the two big cells occupying the extreme
cavities and the space above splits into two counter-rotating cells. The flow
intensity and the heat leaving the domain across the cold horizontal boundary
are directly affected by this break. This interesting phenomenon was not
observed in the case of an array of cavities[16] since the effect of the confining
walls was negligible. All the steady-state solutions were obtained for Rayleigh
numbers Ra ≤ 5 × 105 while in the case of an array of cavities[16] the solutions
remain steady for Ra up to 106. In the stationary regime, the results obtained for
B = 1/4 (not presented here) were qualitatively similar to those observed for B =
1/2. However, the splitting of the cells in contact with the vertical confining
walls was not obtained by increasing Ra.

It should be mentioned that whenever a steady-state asymmetric solution is
possible, its mirror image is also a possible solution (Figure 3). This remark was
also verified numerically by Hasnaoui et al.[16]. For B = 1/4, steady-state

Figure 3.
Steady-state streamlines

and isotherms for B =
1/4: two possible

solutions for Ra = 5 ×
104: (a) Ψext = (10.25,

–10.16); and (b) Ψext =
(10.16, –10.25)
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solutions were observed for Ra ≤ 8 × 104. After this threshold value, sustained
periodic solutions appeared. The transition points from steady-state to time-
dependent flow were obtained by progressively increasing the Rayleigh number
as follows: if a steady-state solution was obtained for Ra1 and a transient one was
obtained for Ra1 + ∆Ra, a third simulation is made by using Ra2 = Ra1 + ∆Ra/2
and, depending on the new solution, the value of Ra2 will be increased or
decreased until a small difference exists between two successive Ra values for
which steady-state and time-dependent modes are obtained. The solutions are
characterized by periodic oscillations in time and their nature depends strongly
on Ra. For Ra = 8.5 × 104, Figure 4 shows the variations of Ψmax (a) and Q (b) with
time. These variations are sinusoidal with identical periods and give, by
projection in the (Q, Ψmax) phase plane, a P1 solution (single closed curve)
according to the convention of Lennie et al.[18] (Figure 4c). For Ra = 105, the

Figure 4.
Periodic solution for Ra
= 8.5 × 104 and B = 1/4:
(a) Q variation with t; 
(b) maximum stream
function variation with
t; and (c) trajectory in
the (Q, Ψmax) phase
plane
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amplitudes of the oscillations increase (Figure 5a, b) and the shape of the
variations changes significantly. The oscillations are more complicated with
several peaks appearing in Ψmax . The resulting trajectory in (Q, Ψmax ) phase
plane is also a complicated closed curve as a result of the periodic variations of
Ψmax and Q with time (Figure 5c).

Figure 6 shows the streamlines and isotherm pattern at the times indicated
by 1, 2, 3, …, 8 in Figure 5a during one flow cycle. It can be clearly seen that the
fluid oscillates between two extreme positions. Each of the two principal cells
located at the central cavity level (between the extreme cells) reaches its
maximum size, consequently constraining the other central cell to be of

Figure 5.
Periodic solution for

Ra = 105 and B = 1/4: 
(a) Q variation with t; 
(b) maximum stream

function variation with
t; and (c) trajectory in

the (Q, Ψmax) phase
plane
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minimum size. This behaviour leads in each half of the flow cycle to the
formation of a small eddy with the same sign as the poor cell. In the other half
of the flow cycle, the eddy and the poor cell increase with time in detriment of
the “main cell” and subsequently merge, forcing it to liberate the lower part of
the central cavity.

The decrease in the height of the vertical adiabatic blocs corresponds to
reducing the geometrical parameter B. Thus, for B = 1/8 all the solutions
obtained in a stationary regime remain symmetrical with respect to the vertical
axis (π) while the symmetry is destroyed for B = 1/2 and 1/4 by increasing Ra.
Typical streamlines and isotherms illustrating these observations are presented
in Figures 7a and 7b for Ra = 104 and 105 respectively. A comparison with the
corresponding cases with higher values of B reveals more intense circulations
(Ψext = 4.92 and 17.81). The value of Ra for which the steady-state solution was
reached is Ra –~ 1.75 × 105. Above this limit, the solutions are transient with

Figure 6.
Streamlines and
isotherms over one cycle
for Ra = 105 and B = 1/4:
(1) Ψext = (16.35, –12.94);
(2) Ψext = (14.74, –12.57);
(3) Ψext = (13.45, –12.88);
(4) Ψext = (14.25, –15.91);
(5) Ψext = (12.52, –14.70);
(6) Ψext = (14.70, –13.84);
(7) Ψext = (15.97, –14.24);
and
(8) Ψext = (14.98, –13.60)

(Continued)
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sinusoidal variations for Ψmax and Q as shown in Figures 8a and 8b for Ra = 2
× 105. Since the periods of the oscillations are identical, the corresponding
trajectory in the phase space is a single closed curve as shown in Figure 8c.
Chaotic behaviour is also presented in Figures 9a and 9b for Ra = 5 × 105. The
fluctuations are larger in magnitude, indicating a better circulation. In order to
identify the route of transition to chaotic motion, a spectral analysis was used.
It was found that at the beginning of the periodic motion (Ra = 2.25 × 105), only
one fundamental frequency is present ( f0 = 4.8828). On progressively increasing
Ra, subharmonic frequencies ( f0/2 and f0/4) appeared and the transition to
chaotic regime occurred via a subharmonic bifurcations as reported by Gollub
and Benson[19]. It is also interesting to mention that the transition to chaotic
convection occurred in a similar fashion for B = 1/4 with almost the same
fundamental frequency. A summary of the principal transitions obtained in the
case of three cavities and different values of B is presented in Table I.

Figure 6.
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Case of two cavities. The results obtained in the case of two cavities differ
significantly from those of three and an array of cavities. The first point to note
here is that the symmetry of the steady-state solutions with respect to the
vertical axis (π) persists independently of the cavity height B.

The case of B = 1/2 is characterized by a bicellular pattern consisting of two
counter-rotating cells for Ra ≤ 6 × 104. After this threshold value of Ra, a
quadracellular mode was observed and persisted for Rayleigh numbers lower
than 4.75 × 105. The multiplicity of the solutions was briefly examined. For Ra
= 6 × 104, two final steady-state solutions were obtained by using appropriate
initial conditions. The first solution is bicellular (Figure 10a) but cannot survive
for higher Ra. The second solution, which is stable for higher Ra, is
quadracellular (Figure 10b). The corresponding normalized Nusselt numbers
are respectively 2.51 and 1.92. This is expected since a break of the cells affects
the general circulation of the fluid. For Ra > 4.75 × 105, sustained sinusoidal
solutions of P1 type were obtained. Different behaviours have been observed for
B = 1/2 and higher numbers of cavities.

For all the steady state solutions obtained for B = 1/4 and Ra ≤ 105, the flow
pattern remains principally bicellular and symmetrical with a weak vortex in
the vicinity of the adiabatic vertical walls of the cavities as shown in Figure 11
for Ra = 105. For Ra > 105 periodic solutions were obtained. Thus for Ra = 6 ×
105, the flow motion is characterized by periodic variations of Ψmax and Q with
time. The relative corresponding behaviours (Figures 12a and 12b) show that
each of these curves presents principal and secondary peaks per period (Ψmax
= 53.2 and Qmax = 5.25). The corresponding trajectory in the phase space is a
closed curve as shown in Figure 12c. For Ra ≥ 7 × 105, a non periodic convection
was observed.

For smaller values of B, i.e. B = 1/8, the steady-state symmetrical solutions
were obtained for Ra ≤ 3.75 × 105. Above this limit the fluid flow was dominated
by non-periodic convection. A spectral analysis of the results (not presented

Figure 7.
Typical streamlines 
and isotherms for 
B = 1/8: (a) Ra = 104;
Ψext = 4.92; and (b) Ra
= 105; Ψext = 17.81
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here) showed that the flow regime is neither periodic nor chaotic. This
behaviour was not encountered in the case of a large number of cavities. This
may be a consequence of the decrease of the relative height of the cavities
conjugated with the confining vertical plates.

Heat transfer
The main quantity of practical interest is the normalized mean Nusselt number
Nu. It gives the ratio of the amount heat transferred across the cold wall of the
cavity to the one transferred by pure conduction. The Nu variations with Ra are
presented in Figure 13 for various numbers of the cavities. For B = 1/8, Figure
13a shows that the Rayleigh numbers for which the convection mode arises, in

Figure 8.
Periodic solution for 

Ra = 2 × 105 and B = 1/8: 
(a) Q variation with t; 
(b) maximum stream

function variation with t;
and (c) trajectory in the

(Q, Ψmax) phase plane
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contrast to heat transfer, increase with the number of cavities. Also, the steady-
state regime is maintained in the case of two cavities until Ra –~ 3.75 × 105. By
increasing the parameter B to 1/4, similar behaviours can be observed as shown
in Figure 13b. However, the stationary regime in the case of two cavities

Figure 9.
Chaotic flow regime
for Ra = 5 × 105 and 
B = 1/8: (a) Q variation
with t; and 
(b) maximum stream
function variation with t
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B Ra Nature of the solutions

Ra ≤ 1.75 × 104 Symmetrical
1/2 1.75 × 104 < Ra ≤ 5.105 Dissymmetrical

Ra > 5.105 Non-periodic solutions

Ra ≤ 9.103 Symmetrical
9.103 < Ra ≤ 8.104 Dissymmetrical

1/4 8.5 × 104 ≤ Ra ≤ 9.75 × 104 Sinusoidal (P1)
105 ≤ Ra ≤ 2.105 Periodic
Ra ≥ 5.105 Chaotic

Ra ≤ 1.75 × 105 Symmetrical
1/8 2.105 ≤ Ra ≤ 3.5 × 105 Sinusoidal (P1)

3.75 × 105 ≤ Ra ≤ 4.75 × 105 Transition to a chaotic regime
Ra ≥ 5.105 Chaotic

Table I.
Flow characteristics in
the case of three cavities
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disappears earlier (for Ra > 105). Further increase in B induces similar trends
only for Ra ≤ 4.5 × 104 as shown in Figure 13c for B = 1/2. The principal
difference noted in this range of Ra is the delay in the appearance of the
convection. For Ra ≤ 6 × 104, the splitting phenomenon of the cells occurring in
the cases of two and three cavities considerably affects the behaviour of the
Nusselt number. It induces a further increase in the viscous forces between the
vortices located at the extreme cavities. Consequently, the corresponding
Nusselt numbers decrease in small ranges of Ra. As Ra exceeds 8 × 104 the
Nusselt numbers for three and an infinite number of cavities are identical and
higher than those obtained in the case of two cavities. This tendency is also
maintained in transient periodic convection. The mean values of the Nusselt
number, obtained by integration over one flow cycle, are shown in these figures
as filled circles.

In order to investigate the effect of the inclination of the cavities on heat
transfer, various simulations were conducted for Ra = 105 and Φ ranging from 0
to 180°. Figure 14a shows the variations of Nu with Φ for different values of B in
the case of three cavities. It can be seen from this figure that Nu depends strongly
on B and Φ. For 10° < Φ < 100°, the heat transfer is an increasing function of B.

Figure 10.
Two possible solutions

for Ra = 6 × 104 and 
B = 1/2: (a) Ψext = 7.57;

and (b) Ψext = 5.81

Figure 11.
Streamlines and

isotherms for Ra = 105

and B = 1/4: 
Ψext = 14.02
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Outside this range of Φ, the Nusselt number increases with decreasing B. The
absolute maximum of Nu is obtained for B = 1/2 and Φ = 50°. The case of Φ =
180° (system heated from above) is characterized by the pure conduction regime.
For B = 1/4, the fluid flow is periodic for Φ = 0°. The reported value in this case
corresponds to a mean value of Nu obtained by integration of the instantaneous
Nu over one period of the flow. Similar behaviours are obtained in the case of two
cavities as it can be seen from Figure 14b. The lower limit of Φ for which the heat
transfer increases with B is 20°. The absolute maximum of Nu is also obtained
for B = 1/2 but for Φ = 70° in this case.

Figure 12.
Periodic solution for Ra
= 6 × 105 and B = 1/4:
(a) maximum stream
function variation with
t; (b) Q variation with t;
and (c) trajectory in the
(Q, Ψmax) phase plane

70

50

30

10
1.0

Ψmax

(a)

t

1.2 1.4 1.6 1.8 2.0

7

5

3

1
1.0

(b)

t

1.2 1.4 1.6 1.8 2.0

Q

70

50

30

10
1

Ψmax

(c)

Q

3 5 7



Convection in
interacting 

cavities

595

Conclusion
A numerical study of the natural convection heat transfer in the case of two and
three cavities heated from below was conducted. Steady-state periodic and
chaotic solutions were obtained for different combinations of the governing
parameters. The influence of the relative height of the cavities on the fluid flow
and heat transfer was then illustrated. It was found that the symmetry of the

Figure 13.
Variation of the

normalized mean
Nusselt number Nu
with Ra for various

numbers of the cavities: 
(a) B = 1/8; (b) B = 1/4;

and (c) B = 1/2 
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solutions is considerably affected by the relative height of the cavities and their
number. This symmetry is destroyed for B > 1/8 in the case of a system formed
by more than two cavities. Periodic solutions and chaotic behaviours have also
been obtained for B ≤ 1/4. These trends have not been obtained in the case of

Figure 14.
Variation of the
normalized mean
Nusselt number Nu
with Φ for Ra = 105 and
various B: (a) case of
three cavities; and (b)
case of two cavities
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B Ra Nature of the solutions

Ra ≤ 4.75 × 105 Symmetrical
1/2 5 × 105 ≤ Ra ≤ 7.7 × 105 Sinusoidal (P1)

Ra > 8.105 Non-periodic solutions

Ra ≤ 105 Symmetrical
1.25 × 105 ≤ Ra ≤ 1.35 × 105 Sinusoidal (P1)

1/4 1.4 × 105 ≤ Ra ≤ 3.5 × 105 Periodic (P2)
4.105 ≤ Ra ≤ 5.5 × 105 Non-periodic solutions
6.105 ≤ Ra ≤ 6.75 × 105 Periodic (> P2)
Ra ≥ 7.105 Non-periodic solutions

Ra ≤ 3.75 × 105 Symmetrical
1/8

Ra ≥ 4.105 Non-periodic solutions

Table II.
Flow characteristics in
the case of two cavities
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two cavities since a perfect symmetry of the solutions about the vertical axis π
was found for all the Ra values considered. Also, it was found that the
normalized mean Nusselt number is a decreasing function of the number of
cavities in the absence of the break of the extreme cells.
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